Aerosol Indirect Effect Analysis: Dynamics vs. Aerosol

Norman G. Loeb

National Institute of Aerospace Hampton, VA

Contributors: B.A. Wielicki, K. Xu, W. Collins

May 3rd, 2006, CERES STM (Williamsburg, VA)

Introduction

- Recent satellite studies have shown correlations between aerosol optical depth and cloud cover (Ignatov et al. 2005; Loeb and Manalo-Smith 2005; Kaufman et al. 2005; Matheson et al. 2006).
- However, correlation does not necessarily imply cause-and-effect.
 Other factors that need to be considered include:
 - Cloud contamination.
 - Humidification of aerosols near clouds (i.e., dynamics).
 - Increased particle production near clouds.
 - An increase in aerosol size caused by in-cloud processing.
 - Sunlight reflected by nearby clouds enhancing the illumination of the adjacent cloud-free pixels.
- This presentation: Study aerosol-cloud interactions from satellite data and cloud resolving model simulations to separate the dynamical and aerosol impacts on cloud properties, and cloud contamination on aerorosol retrievals.

Observational Analysis

- Consider sulfate aerosols (according to MATCH) off African coast (0°S-30°S and 50°W-10°E) during September 2003.
- Consider only single-layer low clouds in 1° regions with both cloud and aerosol retrievals.
- Each day, cloud and aerosol retrievals in each 5°x5° region are separated into two distinct populations:
 - (I) 1° subregions with MODIS τ_a less than or equal to the mean 5°×5° value ($\langle \tau_a \rangle$)
 - (II) 1° subregions with τ_a greater than $<\tau_a>$.

Note: Stratifying each 5°×5° region each day into two groups ensures that both groups are influenced by the same large-scale meteorological influences.

PDFs of Meteorological Parameters

PDFs of Aerosl Parameters

PDFs of Cloud and Radiation Parameters

Variable	Mean		Moore Diff (A)	A / -
	$\tau_a \leq \langle \tau_a \rangle$	$\tau_a > <\tau_a >$	Mean Diff (Δ)	Δ/σ_{95}
$ au_{\mathbf{a}}$	0.11	0.15	$4.4 \times 10^{-2} \pm 1.2 \times 10^{-2}$	3.5
$\eta_{ m a}$	0.37	0.43	$6.7 \times 10^{-2} \pm 3.2 \times 10^{-2}$	2.1
α	0.42	0.62	$-2.1 \times 10^{-1} \pm 7.0 \times 10^{-2}$	3.0
$\mathbf{p}_{\mathbf{w}}$	2.2	2.3	$4.3 \times 10^{-2} \pm 2.2 \times 10^{-1}$	0.19
$\mathbf{w}_{\mathbf{s}}$	6.4	6.6	0.2 ± 0.6	0.38
wind direc	125	125	$3.0 \times 10^{-2} \pm 2.5 \times 10^{1}$	0
wind_div	2.6×10 ⁻⁶	1.9×10 ⁻⁶	$-6.8 \times 10^{-7} \pm 8.5 \times 10^{-7}$	-0.80
θ_{750} - θ_{1000}	13.6	13.6	$-2.5 \times 10^{-2} \pm 6.1 \times 10^{-1}$	-0.04
SST	295	295	$6.0 \times 10^{-2} \pm 5.3 \times 10^{-1}$	0.1
SST-T _c	2.6	3.4	$8.1 \times 10^{-1} \pm 3.5 \times 10^{-1}$	2.3
$\mathbf{F}_{\mathbf{sw}}$	64	78	14 ± 4	3.3
$\mathbf{F}_{\mathbf{LW}}$	279	276	$-2.8 \times 10^{1} \pm 2.0 \times 10^{1}$	-1.4
f (%)	45	59	14 ± 5	3.1
r _e (μm)	15	15	-0.2 ± 0.8	-0.23
LWP (gm ⁻²)	42	53	12 ± 7	1.7

Model Description

- Use LaRC CRM to study the influence of dynamics and thermodynamics on aerosol-cloud property correlations.
- CRM will incorporate a double-moment cloud microphysical parameterization, which
 - predicts the mixing ratio and number concentrations of cloud droplets, cloud ice, rain, and snow (Morrison et al. 2005).
 - provides a detailed treatment of droplet activation and ice nucleation from a specified (or predicted) distribution of aerosol.
- Constrain model simulations with advanced dynamic state and improved aerosol assimilation data.
 - Aerosol information from MODIS, CALIPSO, and improved aerosol assimilation data (with several enhancements over MATCH).
 - High-resolution RTG SST data.
 - CALIPSO boundary layer thickness information and SST to construct temperature and humidity profiles.
 - AMSR-E microwave column vapor data to constrain the column humidity.
 - QuikSCAT surface divergence data to give more accurate large-scale subsidence information.

Model Sensitivity to Initial Conditions and Advective Forcing Data

Fig. 5: Simulation of observed stratus cloud systems with equivalent diameters of 150-300 km during March 2000, initialized and driven by ECMWF data assimilation products. The advective forcing was time-invariant between 12 and 24 h. The domain size is 300 km, the horizontal grid size is 2 km, and the vertical spacing is 100 m. Red lines indicate cloud systems with SST greater than 300 K, blues lines with SST less than 297 K and black lines with SST between 297 and 300 K.

The simulations are driven by advective forcings from the ECWMF data assimilation products. If the pre-scribed SST, advective forcings and initial sounding were perfect, the CRM would produce overcast conditions for all 32 cases.

Model Simulations

Influence of Cloud Contamination on Aerosol-Cloud Property Correlations

- Compare MODIS Aqua and CALIPSO cloud/clear-sky masks

Fig. 8: 532-nm night-time data from LITE showing Saharan dust over the Atlantic Ocean on 17 September 1994. A layer of dust (below 5 km) is located above a cloud-capped marine boundary layer (~1 km). At the right, a layer of cirrus is seen at an altitude of 15 km. Image is centered at 12°N, 57°W.

<u>Summary</u>

- Early satellite results suggest impressive aerosol-cloud correlations:
 - Cloud cover increases with aerosol optical depth and fine-mode fraction.
 - Need to assess role of cloud contamination in aerosol retrievals.
 - No apparent dependence on large-scale meteorological conditions.
 - Need higher-resolution meteo. data to verify this.
- Plan to conduct similar analysis using LaRC CRM to isolate influence of changes in thermodynamics and dynamics vs real indirect effect of aerosols.